Logo Amazon AWS

MLOps Engineering on AWS

Productionize ML models using repeatable and reliable workflows with MLOps Engineering on AWS

Trainings-ID:
AWSS011
Trainings-ID
:
AWSS011

Inhalt des Trainings

Dieses Training baut auf der DevOps-Methodik auf, die in der Softwareentwicklung weit verbreitet ist, und erweitert sie auf Modelle für maschinelles Lernen (ML) zu erstellen, zu trainieren und einzusetzen. Das Training basiert auf dem vierstufigen MLOPs Reifegrad-Framework. Der Kurs konzentriert sich auf die ersten drei Stufen, einschließlich der ersten, wiederholbaren und zuverlässige Stufen. Das Training unterstreicht die Bedeutung von Daten, Modellen und Code für erfolgreiche ML Einsätze. Er demonstriert den Einsatz von Tools, Automatisierung, Prozessen und Teamarbeit bei der Bewältigung der Herausforderungen, die mit der Übergabe zwischen Dateningenieuren, Datenwissenschaftlern, Softwareentwicklern und Betrieb. Das Training behandelt auch die Verwendung von Werkzeugen und Prozessen zur Überwachung und Ergreifung von Maßnahmen, wenn die Modellvorhersage in der Produktion von den vereinbarten Leistungskennzahlen abweicht.

In diesem Training werden Sie lernen:
  • Explain the benefits of MLOps
  • Compare and contrast DevOps and MLOps
  • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
  • Set up experimentation environments for MLOps with Amazon SageMaker
  • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
  • Describe three options for creating a full CI/CD pipeline in an ML context
  • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
  • Demonstrate how to monitor ML based solutions
  • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data 

Zielgruppen

Dieses Training richtet sich an:
  • MLOps-Ingenieure, die ML-Modelle in der AWS-Cloud produktiv machen und überwachen möchten
  • DevOps-Ingenieure, die für die erfolgreiche Bereitstellung und Wartung von ML Modelle in der Produktion

Vorkenntnisse

Wir empfehlen, dass die Teilnehmer dieses Kurses über folgende Kenntnisse verfügen:
  • AWS Technical Essentials (classroom or digital)
  • DevOps Engineering on AWS, or equivalent experience
  • Practical Data Science with Amazon SageMaker, or equivalent experience

Detail-Inhalte

Day 1
Module 1: Introduction to MLOps
  • Processes
  • People
  • Technology
  • Security and governance
  • MLOps maturity model
Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio
  • Bringing MLOps to experimentation
  • Setting up the ML experimentation environment
  • Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
  • Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
  • Workbook: Initial MLOps Module 3: Repeatable MLOps: Repositories
  • Managing data for MLOps
  • Version control of ML models
  • Code repositories in ML
Module 4: Repeatable MLOps: Orchestration
  • ML pipelines
  • Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines
Day 2 Module 4: Repeatable MLOps: Orchestration (continued)
  • End-to-end orchestration with AWS Step Functions
  • Hands-On Lab: Automating a Workflow with Step Functions
  • End-to-end orchestration with SageMaker Projects
  • Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
  • Using third-party tools for repeatability
  • Demonstration: Exploring Human-in-the-Loop During Inference
  • Governance and security
  • Demonstration: Exploring Security Best Practices for SageMaker
  • Workbook: Repeatable MLOps
Module 5: Reliable MLOps: Scaling and Testing
  • Scaling and multi-account strategies
  • Testing and traffic-shifting
  • Demonstration: Using SageMaker Inference Recommender
  • Hands-On Lab: Testing Model Variants
Day 3
Module 5: Reliable MLOps: Scaling and Testing (continued)
  • Hands-On Lab: Shifting Traffic
  • Workbook: Multi-account strategies
Module 6: Reliable MLOps: Monitoring
  • The importance of monitoring in ML
  • Hands-On Lab: Monitoring a Model for Data Drift
  • Operations considerations for model monitoring
  • Remediating problems identified by monitoring ML solutions
  • Workbook: Reliable MLOps
  • Hands-On Lab: Building and Troubleshooting an ML Pipeline

Trainings zur Vorbereitung

Downloads

Jetzt online buchen

  • 31.03.-02.04.2025 31.03.2025 3T 3 Tage Wien OnlinePräsenz
    ETC-Wien · Modecenterstraße 22, Office 4, 5. Stock, 1030 Wien Uhrzeiten
    • Trainingspreis  2.380,-
      • Vor Ort
      • Online
  • 29.10.-31.10.2025 29.10.2025 3T 3 Tage Wien OnlinePräsenz
    ETC-Wien · Modecenterstraße 22, Office 4, 5. Stock, 1030 Wien Uhrzeiten
    • Trainingspreis  2.380,-
      • Vor Ort
      • Online

Preise exkl. MwSt.

Sie haben Fragen?

Ihr ETC Support

Kontaktieren Sie uns!

+43 1 533 1777-99

This field is hidden when viewing the form
This field is hidden when viewing the form
This field is hidden when viewing the form

Lernformen im Überblick

Mehr darüber