Certified Artificial Intelligence (AI) Practitioner (CAIP)

    Seminarinhalt

    Artificial intelligence (AI) and machine learning (ML) have become essential parts of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, all while following a methodical workflow for developing data-driven solutions.

    Course Objectives:
    In this course, you will develop AI solutions for business problems. You will:                                                                                                                                                                                                                                                                                                                                                                                                       
    • Solve a given business problem using AI and ML.
    • Prepare data for use in machine learning.
    • Train, evaluate, and tune a machine learning model.
    • Build linear regression models.
    • Build forecasting models.
    • Build classification models using logistic regression and k -nearest neighbor.
    • Build clustering models.
    • Build classification and regression models using decision trees and random forests.
    • Build classification and regression models using support-vector machines (SVMs).
    • Build artificial neural networks for deep learning.
    • Put machine learning models into operation using automated processes.
    • Maintain machine learning pipelines and models while they are in production.

    Programm

    Lesson 1: Solving Business Problems Using AI and ML
    Topic A: Identify AI and ML Solutions for Business Problems
    Topic B: Formulate a Machine Learning Problem
    Topic C: Select Approaches to Machine Learning

    Lesson 2: Preparing Data
    Topic A: Collect Data
    Topic B: Transform Data
    Topic C: Engineer Features
    Topic D: Work with Unstructured Data

    Lesson 3: Training, Evaluating, and Tuning a Machine Learning Model
    Topic A: Train a Machine Learning Model
    Topic B: Evaluate and Tune a Machine Learning Model

    Lesson 4: Building Linear Regression Models
    Topic A: Build Regression Models Using Linear Algebra
    Topic B: Build Regularized Linear Regression Models
    Topic C: Build Iterative Linear Regression Models

    Lesson 5: Building Forecasting Models
    Topic A: Build Univariate Time Series Models
    Topic B: Build Multivariate Time Series Models

    Lesson 6: Building Classification Models Using Logistic Regression and k-Nearest Neighbor
    Topic A: Train Binary Classification Models Using Logistic Regression
    Topic B: Train Binary Classification Models Using k-Nearest Neighbor
    Topic C: Train Multi-Class Classification Models
    Topic D: Evaluate Classification Models
    Topic E: Tune Classification Models

    Lesson 7: Building Clustering Models
    Topic A: Build k-Means Clustering Models
    Topic B: Build Hierarchical Clustering Models

    Lesson 8: Building Decision Trees and Random Forests
    Topic A: Build Decision Tree Models
    Topic B: Build Random Forest Models

    Lesson 9: Building Support-Vector Machines
    Topic A: Build SVM Models for Classification
    Topic B: Build SVM Models for Regression

    Lesson 10: Building Artificial Neural Networks
    Topic A: Build Multi-Layer Perceptrons (MLP)
    Topic B: Build Convolutional Neural Networks (CNN)
    Topic C: Build Recurrent Neural Networks (RNN)

    Lesson 11: Operationalizing Machine Learning Models
    Topic A: Deploy Machine Learning Models
    Topic B: Automate the Machine Learning Process with MLOps
    Topic C: Integrate Models into Machine Learning Systems

    Lesson 12: Maintaining Machine Learning Operations
    Topic A: Secure Machine Learning Pipelines
    Topic B: Maintain Models in Production
    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-210)
    Appendix B: Datasets Used in This Course

    Zielgruppen

    The skills covered in this course converge on four areas—software development, IT operations, applied math and statistics, and business analysis. Target students for this course should be looking to build upon their knowledge of the data science process so that they can apply AI systems, particularly machine learning models, to business problems. So, the target student is likely a data science practitioner, software developer, or business analyst looking to expand their knowledge of machine learning algorithms and how they can help create intelligent decision-making products that bring value to the business. A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming. This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-210) certification.

    Vorkenntnisse

    To ensure your success in this course, you should be familiar with the concepts that are foundational to data science, including:
    • The overall data science and machine learning process from end to end: formulating the problem; collecting and preparing data; analyzing data; engineering and preprocessing data; training, tuning, and evaluating a model; and finalizing a model.
    • Statistical concepts such as sampling, hypothesis testing, probability distribution, randomness, etc. • Summary statistics such as mean, median, mode, interquartile range (IQR), standard deviation, skewness, etc.
    • Graphs, plots, charts, and other methods of visual data analysis. 
    You can obtain this level of skills and knowledge by taking the CertNexus course Certified Data Science Practitioner (CDSP) (Exam DSP-110).
    You must also be comfortable writing code in the Python programming language, including the use of fundamental Python data science libraries like NumPy and pandas. The Logical Operations course Using Data Science Tools in Python® teaches these skills.

    Downloads

      5 Tage ab  4.125,-
      Termin wählen
      Trainings-ID:
      CNX0016
      Exam
      :
      AIP-210
      Ort:
      Online

      Jetzt buchen

      • 23.06.-27.06.2025 23.06.2025 5 Tage 5T Online ab  4.125,-

          Trainingspreis

           4.125,-
        • Trainingspreis Online  4.125,-

      Sie haben Fragen?

      Ihr ETC Support

      Kontaktieren Sie uns!

      +43 1 533 1777-99

      This field is hidden when viewing the form
      This field is hidden when viewing the form
      This field is hidden when viewing the form

      Die einzigartige Termin- und Wissensgarantie von ETC

      Die ETC Termingarantie ist schon seit 2005 der Garant für Ihre Planungs-Sicherheit und unsere 100% Garantie bietet mehr gesicherte Termine als jeder andere Anbieter! So können Sie immer Ihre Ausbildung konkret planen und darauf vertrauen, dass Ihr Termin mit ETC Termingarantie auch eingehalten wird. Die ETC Termingarantie ist eine echte Garantie, auf die Sie sich auch dann verlassen können, wenn nur 1 Teilnehmer*in angemeldet ist!
      Mehr darüber

      Lernformen im Überblick

      Mehr darüber