Seminarinhalt
Azure Databricks ist eine Plattform im Cloudmaßstab für Datenanalyse und Machine Learning.
Data Scientists und Machine Learning-Engineers können Azure Databricks verwenden, um Machine-Learning-Lösungen im großen Stil zu implementieren.
Data Scientists und Machine Learning-Engineers können Azure Databricks verwenden, um Machine-Learning-Lösungen im großen Stil zu implementieren.
Programm
Explore Azure Databricks
- Get started with Azure Databricks
- Identify Azure Databricks workloads
- Understand key concepts
- Data governance using Unity Catalog and Microsoft Purview
- Get to know Spark
- Create a Spark cluster
- Use Spark in notebooks
- Use Spark to work with data files
- Visualize data
- Understand principles of machine learning
- Machine learning in Azure Databricks
- Prepare data for machine learning
- Train a machine learning model
- Evaluate a machine learning model
- Capabilities of MLflow
- Run experiments with MLflow
- Register and serve models with MLflow
- Optimize hyperparameters with Hyperopt
- Review Hyperopt trials
- Scale Hyperopt trials
- What is AutoML?
- Use AutoML in the Azure Databricks user interface
- Use code to run an AutoML experiment
- Understand deep learning concepts
- Train models with PyTorch
- Distribute PyTorch training with TorchDistributor
- Automate your data transformations
- Explore model development
- Explore model deployment strategies
- Explore model versioning and lifecycle management
Zielgruppen
- Fortgeschrittene Anfänger
- Data Scientist
Vorkenntnisse
In diesem Training wird davon ausgegangen, dass Sie über Erfahrung im Umgang mit Python für die Untersuchung von Daten verfügen und damit vertraut sind, Machine Learning-Modelle mit gängigen Open-Source-Frameworks wie Scikit-Learn, PyTorch und TensorFlow zu trainieren.
Ziehen Sie in Erwägung, den Lernpfad Erstellen von Machine Learning-Modellen zu absolvieren, bevor Sie den vorliegenden Training bearbeiten.
Ziehen Sie in Erwägung, den Lernpfad Erstellen von Machine Learning-Modellen zu absolvieren, bevor Sie den vorliegenden Training bearbeiten.